\begin{tabbing} $\forall$\=${\it ds}$:fpf(Id; $x$.Type), ${\it da}$:fpf(Knd; $k$.Type), $A$,$B$:ecl{-}trans{-}tuple\{i:l\}(${\it ds}$; ${\it da}$), $m$:$\mathbb{N}$,\+ \\[0ex]$L$:(event{-}info(${\it ds}$;${\it da}$) List), $z$:event{-}info(${\it ds}$;${\it da}$). \-\\[0ex]spreadn(\=$A$;\+ \\[0ex]${\it Ta}$,${\it ksa}$,${\it ia}$,${\it ga}$,${\it ha}$,${\it aa}$,${\it ea}$.spreadn(\=$B$;\+ \\[0ex]${\it Tb}$,${\it ksb}$,${\it ib}$,${\it gb}$,${\it hb}$,${\it ab}$,${\it eb}$.((${\it Ta}$ = ${\it Tb}$ $\in$ Type) \\[0ex]c$\wedge$ ((${\it ksa}$ = ${\it ksb}$ $\in$ (Knd List)) $\wedge$ (${\it ia}$ = ${\it ib}$ $\in$ ${\it Ta}$)) \\[0ex]c$\wedge$ \=((\=${\it aa}$\+\+ \\[0ex]= \\[0ex]${\it ab}$ \\[0ex]$\in$ $\mathbb{N}\rightarrow$(\=$k$:\{$k$:Knd$\mid$ ($k$ $\in$ ${\it ksa}$)\} $\rightarrow$decl{-}state(${\it ds}$)$\rightarrow$\+ \\[0ex]ma{-}valtype(${\it da}$; $k$)$\rightarrow$${\it Ta}$$\rightarrow\mathbb{B}$)) \-\-\\[0ex]$\wedge$ \=(\=$\forall$${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List), $k$:\{\=$k$:Knd$\mid$ \+\+\+ \\[0ex]($k$ $\in$ ${\it ksa}$)\} , \-\\[0ex]$s$:decl{-}state(${\it ds}$), $v$:ma{-}valtype(${\it da}$; $k$). \-\\[0ex]iseg(\=event{-}info(${\it ds}$;${\it da}$);\+ \\[0ex]append(${\it L'}$; cons($<$$k$, $s$, $v$$>$; [])); \\[0ex]$L$) \-\\[0ex]$\Rightarrow$ (\=${\it gb}$($k$,$s$,$v$,ecl{-}trans{-}state($B$; ${\it L'}$))\+ \\[0ex]= \\[0ex]${\it ga}$($k$,$s$,$v$,ecl{-}trans{-}state($B$; ${\it L'}$)) \\[0ex]$\in$ ${\it Ta}$)))))) \-\-\-\-\-\\[0ex]$\Rightarrow$ (ecl{-}trans{-}act(${\it ds}$; ${\it da}$; $A$)($m$,append($L$; cons($z$; [])))) \\[0ex]$\Rightarrow$ (ecl{-}trans{-}act(${\it ds}$; ${\it da}$; $B$)($m$,append($L$; cons($z$; [])))) \end{tabbing}